ISWI and CHD chromatin remodelers bind to promoters but act in gene bodies

نویسندگان

  • Gabriel E Zentner
  • Toshio Tsukiyama
  • Steven Henikoff
چکیده

Background ATP-dependent nucleosome remodelers influence genetic processes by altering nucleosome occupancy, positioning, and composition. In vitro, yeast imitation switch (ISWI) and chromodomain helicase DNA-binding (CHD) remodelers bind ~30-85 bp of extranucleosomal DNA [1-3]. However, in vivo, ISWI and CHD remodelers act within gene bodies [4], which contain regularly spaced nucleosomes separated by less than 20 bp of linker DNA [5]. How, then, do ISWI and CHD remodelers act within regions containing insufficient linker DNA for their association with chromatin?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening

Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential ...

متن کامل

The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism

ISWI family chromatin remodelers typically organize nucleosome arrays, while SWI/SNF family remodelers (RSC) typically disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex or mutations in the 'basic patch' of histone H4 (an e...

متن کامل

The ISWI Chromatin Remodeler Organizes the hsrω ncRNA–Containing Omega Speckle Nuclear Compartments

The complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA) essential, among other functions, for ...

متن کامل

Quantitative Determination of Binding of ISWI to Nucleosomes and DNA Shows Allosteric Regulation of DNA Binding by Nucleotides

The regulation of chromatin structure is controlled by a family of molecular motors called chromatin remodelers. The ability of these enzymes to remodel chromatin structure is dependent on their ability to couple ATP binding and hydrolysis into the mechanical work that drives nucleosome repositioning. The necessary first step in determining how these essential enzymes perform this function is t...

متن کامل

Functional Antagonism between Sas3 and Gcn5 Acetyltransferases and ISWI Chromatin Remodelers

Chromatin-modifying enzymes and ATP-dependent remodeling complexes have been intensely studied individually, yet how these activities are coordinated to ensure essential cell functions such as transcription, replication, and repair of damage is not well understood. In this study, we show that the critical loss of Sas3 and Gcn5 acetyltransferases in yeast can be functionally rescued by inactivat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013